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The problems of plane ~ad aadsymmetric disk-shaped cracks in hydraulic fracture [1, 2] are considered in transversely-isotropic 
poroelastic media satura~ted with fluid. The crack is opened up by a flux of viscons fluid filtering through a stratum. The stressed 
state and deformation of the poroelastic media is described by the Biot equations [3]. An analytic solution is found for a stationary 
"ideal" disk-shaped crack along which the pressure is constant. 

In classical hydraulic fracture theory [1, 2, 4, 5] for an isotropic stratum, effects associated with poro- 
elasticity have been ignored in the description of crack propagation [6-9]. However, poroelastie effects 
are important in most problems of practical interest [10-12]. Moreover, the actual media in which 
hydraulic fracture occurs are, as a rule, anisotropic. 

Hydraulic fracture problems for an isotropie poroelastic medium have been considered previously 
[10-18]. This paper develops a method for solving hydrauiie fracture problems for transversely-isotropie 
media. This, together with the results obtained, generalize the approach and some of the results of [18]. 

1. STATEMENT OF THE PROBLEM 

Suppose there is a plane (axisymmetric) crack in an infinite transversely-isotropic porous space 
saturated with fluid and that there is a homogeneous compressive stress field 0 .  supported in an open 
state by fluid injected into it. The injected fluid moves along the crack (radially) and can filter through 
its walls into the porous space. It is assumed that the plane crack is perpendicular to the axis of symmetry 
x2, and the Xl axis is directed along (lies in the plane) of the crack. It is moreover assumed that the 
radius of the borehole r 0 is much smaller than the crack length L, so that effects due to the borehole 
can be ignored. 

To describe the deformation of the transversely-isotropic porous medium saturated with fluid we use 
the Biot equations for coupled consolidation [3] (i,j, k = 1, 2, 3; summation is carried out over repeated 
indices) 
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Here (1.1) is the equilibrium equation, (1.2) are governing relations, (1.3) are the continuity equations 
for a filtering fluid, and (1.4) is D'Arcy's law for a transversally-isotropic porous medium, t~ij is the total 
stress tensor, e# is the strain tensor, E and E '  are Young's moduli, and v and v' are Poisson's ratios for 
a poroelastic medium, G and G'  (G = E/([2(1 + v)]) are shear moduli, p is the pore pressure, m is the 
mass of permeating fluid per unit volume, m0 andp0 are the mass and density of the permeating fluid 
in the undeformed state, kl, k3 and k2 are the permeability coefficients in the plane perpendicular to 
the axis of  symmetry and in the direction of the axis of symmetry, IX is the viscosity of the fluid, ui is the 
filtration rate in the ith direction, and 8ij is the Kronecker delta. 

The parameters 1] and rl' can be expressed in terms of the parameters (z and it" introduced in [14] 

'I 1 n = ~  ~ -  c t ' ,  ~' = ~ ( c t ' -  2v '~)  
(I - v ) E "  2(I - v )  

o ~ = { I - ~ . l [ ~ . 2 + v ' k 3 ] } l ( 2 b + b '  ), a ' = { 1 - L l [ 2 v " ~ . 2 + ( l - v ) ~ . 3 ] } l ( 2 b + b '  ) 
l# # ~'1 = E , ~'2 = 1 - v,, - v~, ~,~ _ 1 - 2v,  

I - V - 2v 'v"  E,, ' " E,~ 

" " V "  V '  Vu V .  
E,, =E~' '  E,, = ~ '  b = ( I - 2 A ) B ,  b ' = A B  

where E,, and E,', are Young's moduli and Vu and v,', are Poisson's ratios appropriate to the condition 
that the fluid cannot leave the medium, and A and B are the Skempton parameters. 

We will describe the motion of the injected fluid along the crack by the continuity equation and 
Poiseuille's law 

a i a w 2 a 
- -  w + - -  - -  (x~ wu)  = -2x)t, u - - -  pc (1.5) 
at x~ ax I 12~t ax I 

where w is the size of the opening between the crack edges, pc is the pressure of the fracture fluid injected 
into the crack, a)L is the rate of  leakage of the fracture fluid into the stratum across the crack walls and 
n is the symmetry index for the problem (n = 0 for a Olane crack and n = 1 for an axisymmetrie crack). 

At the crack edges we impose the following boundary conditions 

p, , (x  I , t )  = p ( x l , x  2 = O,t)  (1.6) 

~OL(XI,t ) -- k2 ~ p ( x l , x 2 = O + O , t  ) (1.7) 
tX ~gx 2 

2. T H E  P L A N E  P R O B L E M  

In the plane strained state (e33 = 0), which will be considered again later, the governing relations 
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Here  the equilibrium equations (1.1) can be written inxl andx2 coordinates in the form 

a(~ii i ~)xj = o, o l j  = (~ji (2.2) 

In order to satisfy the equilibrium equations (2.2) identically for the plane problem we introduce the 
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Airy function (a, ct' = 1, 2, summation is not performed over repeated Greek indices) 

¢tal ~ = (-l)a+1332F 13x3_ot3x3_f~ (2.3) 

From the deformation consistency conditions 

32~11 /3X 2 4"52822 13X? ----252Ei2 [SxISX 2 

and the governing :relations (2.1) using (2.3) we obtain 

34 34 34 ~" 52 52 '~ 
at~x~ F + a ~ F + ~ F = - 2 r l ~ b ~ x ~  P+~x22 p -  ox, ox 2 ox 2 ) 

1 - v ' 2 - :  _ I - v'-7.  lq'  / 11 + v '  

a I = l _ - - i - - ~ . ,  a s = 2 ~ , l _ v  b= l + v  "- 

(2.4) 

To solve Eq. (2.4) we introduce complex variables through the formulae za = xl + i~ax2 and their 
complex conjugates z* = xl - ilxaX2. 

Let gl and Ix2 be roots of the equation 

114 - a2112 + a I = 0 (2.5) 

The left-hand skte of Eq. (2.4) can be written in the form 

5 4 

16(11~gz)2 5z~Sz~Sz,3z~ F 

In order to obtain a complex representation of the fight-hand side of Eq. (2.4) we use properties of 
the roots of  Eq. (2.5). They are either real (ttl = gl, !12 = g2, g3 = -g l ,  !14 = -P.2) or complex-conjugate 
(gl = 11, g2 = ~ 113 = -11, ~ = -~t). If the roots of Eq. (2.5) are real, then z* = £'a- If they are complex- 
conjugate, then z* = £'3-a. Equal room correspond to isotropic elasticity theory [20], and we do not 
consider this case. From what has been said, the following complex representation can be obtained for 
Eq. (2.4) 

5 ~ ! 2 3 2 b - B 2 
X ,:,-.. P. '%= a=l ga (Bs-a - B  2 ) (2.6) 

(The independent variables xl and x2 are either expressed in terms of complex variables zl orz~ or in 
terms of z2, z~.) 

To integrate Eq. (2.6) we use the following method [19]. The independent variables xl, x2 and the 
functions F andp  are taken to be complex. In this situation the new variables zl, z~ and z2, z~ become 
independent. At the same time the independent variables zl, z~ can be expressed in terms of z2, z~ and 
vice-versa. After performing the required calculations one returns to the original variables in which xl 
and x2 are real, and za and z* (~t = 1, 2) become conjugate values of a single complex variable. 

Integrating Eq. (2.6) and using the fact that in the change to real variables xl andx2 the Euler function 
F should be real, we obtain 

2 f 1 t F= fa(za)+ frL(za)--~rl)%z~ d ~ a d ~ p ( ~ a , ~ )  (2.7) 
ct=l z4~ z('~t 

and z01, zm, z02, z02 are constants. where fl(zl), f2(z2), f~(z~), f~(z~) are analytic functions * * 
Using the fact that in the change to real variables xl and x2 the Airy function F should be real, we 

obtain: for real and distinct roots of  Eq. (2.5)f*(z*) = fct(za), and for complex-conjugate rootsf*(z*)  

---- f3__a(Z3_~) . 
Substituting (2.7) into (2.3) we obtain a representation for the components of the stress tensor 
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2 2 ( ,  , t Cht = - 2 R e  Y. ~t a Oa (za )+  l l r a [ p - Q a ]  
Ot=] "2 

(2.8) 

(~22 = 2 R e  Z ~ ( Z e t ) -  rl~%[p+Qa] 
0t=l 

612 --2Ira ga ~ ( z ~ ) +  ~lK:a 

. 

Here ~.(x~)_-f'~(z.) are analytic functions. 
From (2.9) and (2.10), using the equalities 

(2.9) 

(2.10) 

(2.11) 

2 b (I - V)(t I' / 1" I + V') 2 
1¢= ~'. Ka = - - =  i _ v , 2 =  , X Ka~ t2 =1 (2.12) 

ct=l a I 0t=l 

we express the real and imaginary parts of  the analytic functions ~ in terms of  the stress tensor and 
the pore pressure 

2 2 
2Re 5". tl)~x(Zot)----(~22 + t r i p + t i R e  ~ ~%Q~ (2.13) 

ot=l ot=l 

2 2 

2hn ~, IxaO~(za)=t~ t2-Him Y. laQrttQ ~ (2.14) 
ct=l ct=l 

We also find a representation of the displacement field of  a poroelastic medium in terms of the same 
analytic functions *~,. 

Substituting (2.8)-(2.10) into (2.1) and using the relations 

3 = ikta (2.15) 
E22 ---- OX'---~U2 ' OX 2 ~ZIx O~ct 

we obtain the displacement field 

u 2 = 2 I m  ~ qa ,,(,.et) + rlK'ctQ_~. qcL = (laaE') -t [(i + v)v'~t 2 + ! - v'2~] 

The partial derivative of the displacement field with respect to Xl 

~x I u 2 = 2 I m  ~ qa . ~ ( z a ) +  rlretQ~ , = +_----;-; 0 t= l ,2  (2.16) 
a=l 3xt Oza Oza 

is needed below. 
Specifying the load on the upper and lower edges of the crack, we obtain a Diriehlet problem in the 

exterior of a cut for two analytic functions ~x(z~) (et = 1, 2) (2.14) and (2.15). Using the superposition 
principle we represent the stress and displacement fields in the form of sums of two fields: one of them 
corresponds to a continuous body under the action of loads applied with the body ( 6 .  is a uniform 
compressive stress and p .  is the unperturbed pressure of the permeating fluid), and the second to a 
body with a slit along the surfaces to which loads are applied. Here the boundary conditions at the crack 
edges have the form 

~ 2 = ¢ . - p ( x t , t ) ,  t~2 =0,  x : = 0 + 0  (2.17) 

In order to solve the boundary-value problem (2.12), (2.13) it is also necessary to specify the values 
of  the function Im Q~ along the crack edges x2 = 0 _ 0. 
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It can be shown that at the crack edges Re Qa = 0 (it = 1, 2). In particular, in the axisymmetrie case 
this will be demonstrated below. 

Consequently, the boundary-value problem (2.14), (2.15), (2.17) for the functions O~,(za) (tx = 1, 2) 
can be written in the form 

2Re iO~(z=) =-Y±(xl,t) ,  2Im i P ~ ( z ~ )  =rlT±(xl,t), Ixll<l 

E±(xt,t) = p ( x t , t ) - O  . - ~ r ( p ( x  I , t ) -  p** ), 
2 

T ± ( x l , t ) = - I m  Y. p ~ Q ~  
0.=1 

(2.18) 

The solution of 'the Dirichlet boundary-value problem (2.18) for a slit can be obtained by standard 
methods [19] and has the form 

P3-~ J ; - z  
• ~ (z) = - 2ni(P3-a - I x a ) ~  -t 

rl~: I T(~, t)d~ P3-ct Co 
2x(P3-~-P~)  -[t ~ - z  + (P3-~-P~)  ~ '  

2[1- V'2-](p.i + I.t2)tl 
W ( X I , t ) =  

lcE'~h~t2 .~ o 
k 

Ta=T~-T~2 , T~ =± ImQ~ 

T ÷ - T- (2.19) T = ~  

(Co is a constant). 
Substituting the functions O~(za) (¢t = 1, 2) into (2.16), using the Sokhotskii-Plemel formula and 

integrating over xl, we obtain the crack opening in the transversely-isotropic poroelastie medium 

-- X? Xl 

(2.20) 

Here the Barenbatt fracture criterion [2] for a transversely-isotropic medium can be written in the 
form 

! 
where Ki is the adhesion coefficient, and for a plane crack n = 0, while for an axisymmetric crack 
n = 1. Because the parameter ~ occurs in ,Y.(~, t) the resulting fracture criterion differs from the 
corresponding crkerion for an elastic body. 

In the limit as 11 -~ 0 formula (2.20) gives the crack opening in the transversely-isotropie elastic body. 
If we also have PI = P2 = 1, then (2.21) reduces to Sneddon's formula for an isotropic elastic body. 

The second term in expression (2.20) gives the non-local contribution to the crack opening from the 
pressure distribution p of the fluid permeating the medium. The problem of calculating this term in 
the axisymmetric ,ease will be considered in Section 6. 

In such an approach one can thus integrate those equations of the coupled theory of transversely- 
isotropic poroelastl'city which describe the deformation of the body. Here the problem of hydraulic 
fracture reduces to the pore pressure transfer equations (1.3) and (1.4) and a functional relating the 
crack opening (2.20) to the pore pressure. The fluid transfer equations, after transformation, can be 
reduced to a singl,~ diffusion-type equation for the pore pressure only with non-local sources associated 
with the change in the permeability of the medium when it is deformed. 

3. THE A X I S Y M M E T R I C  P R O B L E M  

To describe the axisymmetric deformation of a porous medium saturated with fluid and a fluid f-altering 
through it one uses the coupled consolidation equations (1.1) and (1.2) in a cylindrical system of 
coordinates (t, j ,  lc = r, ~, z).  

In the plane sU'ained state an Airy function was introduced and the solution was then found using 
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analytic function theory, but this approach is inapplicable to the three-dimensional axisymmetric 
problem. Hence for the three-dimensional poroelastic problem we proceed as follows: we write the 
equilibrium equations in displacements, and then solve them using the theory of generalized analytic 
functions. 

The equilibrium equations in displacements have the form 

a2 +l/ ]w a a 
A44-ff'--_2 + Ai Oz '-~r[,-~r r ) J  ' +(a'3 + A44)~z~rW2 =b'-~rP 

(A'Tl+ A44)(~--+l-'l~'~-Wlkor r/oz A33 ~'~ "~'2+ v,  + w2= 

E rl A II + AI2 + Ai3- b2 E' 

(3.1) 

where wl is the radial displacement, and w2 is the displacement along the direction of the axis of symmetry 
of the problem. 

Unlike the equilibrium equations for an elastic medium, the equilibrium equations for a poroelastic 
body (3.1) contain derivatives of the pore pressure and so the method of solving these equations 
presented in [20] cannot be directly applied to this case. 

We introduce the notation 

D=AI3+A44, Aj = A33 - A441a~ 2, B i = Alll.tj 2 -A44; j = l , 2  

where I~ are the roots of the characteristic equation 

(3.2) 

D2~t72 = AjB i (3.3) 

Multiplying the first equation in (3.1) byBiD and the second byA1D, we transform them to the form 

a ~ = A~D'~GI-AIA44I~-~'-+I)G2 C-~zP (3.4) AliB I ~r. Gi + A,uDdzG 2 O, .. = 
tot" r /  

GI Dbl p + D ( ~ r + l ) w i  +Ai D G 2 =BI ~} - D ~ r W  2 (3.5) = - All O--Z w2, a-z wl 

C = D(b2A I - blDA33 I All ) 

Solving in tu rn  first system (3.4), and then (3.5), we find the displacements wl and w2 in the poroelastic 
medium. The choice of the coefficient in front of the pore pressurep in (3.5) enables one to eliminate 
Op/i)r from system (3.4), which is a necessary condition for applying generalized analyt/c function theory. 

We represent Eqs (3.4) in the form 

a a l a  a 

ara( u l 

a G I a DG 2 
p2~zU 2 = A4,1(lkl,22 -11/2) ' P2~zV2 = ALIBI1122(1122 -I.I.72) 

1] 2 = CD = [lttEA I IAIBIA,14(1122 - I1/2 )]-! 

(3.6) 

We introduce complex variables, the variables conjugate to them, and derivatives with respect to those 
variables by the formulae 
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ta = IXaZ + ir, ta = Ixaz - ir, a = i, 2 

2 0_.~__ a . a  O . + i O . ~  - at, =kt~ I - - t ~ ,  2 ~ =rt~ I 
aZ ar ~ az ar 

(3.7) 

We first multiply the first equation in (3.6) by i and add it to the second equation, and then multiply 
the first equation in (3.6) by -i and also add it to the second, and then using (3.7) we obtain 

a a v" ,v;=,l * - a p  

--t2 ~ _  t2 = 112 ~ .  p, 2 ~ t  2 2 - t2 t2 aZ 

where ¥2 = (a/az)(p2n2), ¥~ = (a/az)(p2A~) and A2 = U2 + iV2, A~ = U2 - iV2. 
Integrating (3.8) we find 

(3.8) 

I a t  i , I a t" 
V 2 = X 2 + i q 2 ~ z  .J pd~2, ~1/2 =~;+ '2"q2"~ -- I pd~2 (3.9) 

t21| Z, OZ /20 

Here ~2 and ~ are arbitrary generalized analytic functions (i.e. functions satisfying the equations 
2o~yat*2 - (~2 - g!~)/(t2 - t~) = 0 and 2~I/0t2 -(~2 - Zl)/( t2 - t l )  =. 0 [20]). 

Introducing in place of the generalized analytic functions ~2 and ~2 the functions 92 = a(p~)/~z and 
91 = a(p2gl)/az which are also generalized analytic functions, and integrating Eqs (3.9), we obtain 

l t , . ( U 2 + i V 2 ) = P 2 9 2 + T n 2  " pd~*2, p 2 ( U 2 - i V 2 ) = P ; 9 2 + l r 1 2  t] pd~2 (3.10) 
121) 1211 

(the constant P2 will be determined below). 
Expressions (3.10) give the solution of the system of equations (3.4). Using these solutions we seek 

a solution of the lhaear system of equations (3.5) in the form of a superposition 

-Uw2111 IIW_,211 

D(~Tr + l ) W l l  +AI ~'Zw21 = G  I +Otlp, 

-'r) ° D + wl~ +At ~zz w22 = otzp, 

Bt w -  wtt - D w21 = G~ (3.12) OZ 

Bi ~Z Wl2 -- O~r  w22 -- 0 (3.13) 

Db I AzC 
(X I +(3[ 2 = ~ ,  O~ I = 

AI I A33A44 D([t 22 - }.tl 2 ) 

The solution of :system (3.12) is given by the expressions 

wll =-P2to2V2 ' w21 = P2U2 , (02 = D(la2B2) -I 

(3.14) 

(3.15) 

The system of equations (3.13) is solved using expressions (3.7) and (3.14) in the same way as system (3.12) 

wl2 = -pttoiV~, w22 = plUi 

P191+ "2 rll ! pd~;, p I ( U I - i V t ) =  P19; + I ql ll~ pd~l Ui + /vl)= 
r io /10 

Bto~2ktj Db I 
"qj= D z , to t=D(gIBI)  - I ,  o~ 2 =  - a  l 

AIj 

(91 and 9] are gerteralized analytic functions and the constantpl is determined below). 
Because it follows from (3.11), (3.15) and (3.16) that 

(3.16) 
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W I = - - p l O )  I V I - -  p 2 0 0 2 V 2 ,  w 2 = PlUi + p2U2 (3.17) 

we impose evenness conditions on the functions Uj, Vj q = 1, 2), which follow from the symmetry of 
the problem 

Ui(z , r )  = U i ( z , - r ) ,  Vj(z ,r)  = - V i ( z , - r )  

Hence it follows, using (3 10), that 9.(t-) = 9~(t~), • : 7 
We consider the two posslbl_e cases ~or the roots of Eq. (3.3) 
1. Im lxj = 0, so that U i = Uj, Vj =___Vj, i.e. ~0*j~) = ~0j(t/) ; 
2. Im lij ~ 0, Ix1 = ~2, so that Uj = Uj, II3. 4 = Va_j, i.e. Ip~__j(t3_4) = ~3_j(t3_j). 
Thus using the evenness conditions, from (3.10), (3.15) and (3.16) we obtain 

2 
w I = Re 2~ [iroapa~p a - i~}, 

(X=I 

lg = -= rla I J PdCa + Pd~*a 
4 Lt~¢ ) I(xO 

2 
"'2 = Re Y. {Pa~% +/a*} (3.18) 

0t=l 

We putpi = qi. (Here and below we use the notation introduced in Section 3.) We express the stresses 
in terms of the deformations from (1.2), and then using (3.18) and the fact that the roots of the character- 
istic polynomial are either real or complex-conjugate, we obtain a representation for the components 
of the stress tensor in terms of two generalized analytic functions 

2 2 
Re ~ ~0~ (z~) = ~:: + k'rip + 1"1 Re ~ ~aQ-a (3.19) 

ot=l a = l  

2 2 
Im X ~ta~0~(z~)=O~z-rl Im 2~ laa~%Q.a (3.20) 

a=l a=l 

Q~ ="z-r" I d~aP(~a, ta)  
Ota tcsa 

To change from the generalized analytic functions % (a  = 1, 2) to ordinary analytic functions we 
use the integral operators S/1 and Si ( / =  1, 2) [20]. 

x Thus, if ~0 is a generalized analytic function, then • -- S- cp is an ordinary analytic funetiun. 
The contour of integration for the operators S/-" and Si is chosen to be the straight line perpendicular 

z 
to the x axis and passing through the point z = z0. In this ease the operators S~- and Si do not depend 

1 1 on the index i, i.e. ~-  = S and Si = S, and when (Pi and ~i satisfy the evenness conditions, they can 
be written in the form 

dr 
~i)i(ti)=S-Iq)i =sign(y)ff~Ty! [rRe(Pi(z i )+iyIm~i(~i)]  4y2 '1.2 = s o l  R e ~ ° i  +isiI Im~i  

2 i [ r R e e o i ( o i ) + i y l m O i ( o i ) ] ] r d y y  2 =soReep i+is~Ime~  i (3.21) ~i(ti ) = SdPi = - ~  0 

( X  i = t i = Bi z + ir, X = Z = ZO, ~i = ~i = ~tix + (V). 

Using the operators Sk -1 (k = 0, 1) we change in representations (3.19) and (3.20) from generalized 
analytic functions to ordinary analytic functions 

Re 2~ ~ t ( z ~ )  -- So I ~zz +K'rlp+•Re 2~ lcaQa (3.22) 
0t--I ot=l 

Im ~ g a ~ ' ~ ( z . ) = s ~  ~ (Jr... - r l l m  Y. ;l~l<~Qa 

We will formulate a mixed boundary-value problem for the analytic functions ~ ( z a )  (a  = 1, 2), using 



A hydraulic fracture in a transversely-isotropie poroelastic medium 653 

the super-position principle, i.e. representing the stress and displacement fields in the form of the sum 
of two fields, one ,of which corresponds to a continuous body with loads applied inside the body (~** 
being a homogenea)us compressive stress andp** being the unperturbed pressure of the permeating fluid), 
and the second to a body with a cut with applied surface loads 

O = = p - a * * ,  O, z = 0  (3.23) 

The operators sk -1 (k = 0, 1) relate the three-dimensional axisymmetric strained state (z, r) of 
the plane state ~amaetrie abut the axis x = 0 (y = z, r ---> x). Bearing in mind that the value of the 
radicals in the operators st -1 have opposite signs at the two edges of the cut, and setting the 
constants xa0, t~0 (ct = 1, 2) to zero, to satisfy the symmetry conditions (about thex = 0 axis) we obtain 
from (3.22) that 

Re ~; O~(zct) =[SotZ(r,t)] ±, Im IX=~(z=) =~[s-{IT(r't)]± (3.24) 
La,-'l I 

2 
Ixll</, ~.±(r,t)=p(r,t)-CL.-nK(p(r,t)-p**), T±(r,t)=-Im ~. ~t=KaQ~ 

0t=l 

Here we have used 11 Re I;2=1 ~ = 0, which we will justify later. 
The solution of the Dirichlet boundary-value problem for the cut (3.24) is similar to (2.19). 
Differentiating expression (3.18) with respect to and changing from the generalized analytic functions 

• t 1 9,,(z,,) to analytic ftmctious tl~(za) using the operators Sk and sk- (k = 1, 2), we substitute into this 
expression the functions (p~(z=) found from the solution of boundary-value problem (3.24). Then, using 
the Sokhotskii-Plemel formula and integrating over r, we find the crack opening 

o - -  + ( 3 . 2 5 )  

I 
Wa=lra(~,t)d~, r==(Ta+-r~)/2, rd -- ImQ ~ 

r 

Here we have u~ed the Barenblatt fracture criterion (2.21) for a transversely-isotropie medium. 
All the conclusions in Section 2 concerning fracture criteria for various limiting cases and the transfer 

equations for the pore pressure in the plane strained state remain true for the axisymmetrie problem. 
In the following sections we obtain the solution of the steady axisymmetrie problem and we are shown 

how a real variable can be obtained in the second term of formula (3.25). 

4. THE STEADY SOLUTION 

We consider the steady hydrofracture problem in a transversely-isotropic porous fluid-saturated 
medium with an a~jnunet r ie  non-moving crack of radius I = const. Here it is assumed that the pore 
pressure of the fluid depends only on coordinates r and z (p(r, 9, z, t) = p(r, z)). Here the fluid transfer 
equation in a transversely-isotropic porous medium (1.3), (1.4) in cylindrical coordinates reduces to a 
Laplace equation for the pore pressure 

3 a 0 2 

Became of the :ffmmetry of the problem about the z = 0 plane we will formulate the boundary-value 
problem for the Laplace equation (4.1) in the upper half-plane z > 0 

p(r,z=O)-p** =po(r)-p**, 0--<r</; ~Zp(r,z=O)=O, r>l (4.2) 

p(r.z --->.o)- p. =0 
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Boundary-value problem (4.1), (4.2) in cylindrical coordinates can be solved by the method of dual 
integral equations [21]. 

We will consider the special ease of an ideal crack, i.e. a crack with a high hydraulic conductivity. 
The pressure distribution for fluid in such a crack can be taken to be approximately constant along its 
edges 

P0(r) = P0 = const (4.3) 

The solution of boundary-value problem (4.1), (4.2) with (4.3) has the form 

2 (21+ ], p±=q(l+_r)2+Z2z2 ' Z = ~ k  ~ (4.4) p(r,z) =-~(po - p.)arcsin 7 P- kl 

Changing to complex variables tj, t~ (3.7) in expression (4.4), we obtain 

/ / p(r,z)=p t j - t j  tj+tj . . 2 
2i ' 21~j = P(tj'ti )=-~ (p° - p**)arcsinZ (4.5) 

Z = 2l[f(tj, t; " -J )+ f(t~,t~)] 

f(u,x))=([l-i(I-aj)u+iaj~][l+i(l-ct.i)~-iaju]))~, a j  =(~t~ +X2)/(21a 2) 

The tilde over the pressureff(tj, t~) is henceforth omitted. 
The hydraulic fracture opening m a transversely-isotropic poroelastic medium can be obtained by 

substituting (4.5) into (3.25) 

w(r) =2[I-v'2-](lxt+lJ '2) l[Po-O**+nlC(po-p**)] I -  + m a y  ;¢aWa (4.6) 
~'lJ'd~2 a=l 

The functions Wa are determined in terms of elementary functions, but in the general case they are 
rather complicated and their form depends 9 n the parameters ai, i.e. on the roots of the characteristic 
equation (33) . . . . .  ~ (j = 1, 2) and the ratio g = ~l(kl/k2). Hence we giv" e the function W, anlyo for real roots ~. 
of the characteristic equation, and consequently for real o 9. 

I f  ,/1/2 ~< O9, ~< I w e  h a v e  

2otj - l frc  r f 23f~j r I 

- ~ arcct~l ~ ) 

[ 4  r J 2 1 + k - otj _ l" arctg . . . . .  
- g  arctg l_k+ot i 

k=l VtXi It + (-I)* air] 

l (arcsinI[4(k-cti)2-1]3/i-(k-oci,2)- 
2(2ctj - I ) 

_arcsinI(-l)~(2aj-I)l+2~ir~ (hi, i ~ ] ]  
1 ' ) -  arcsinL a'-~'~ flJJl 

~ij = a j ( l - c t j ) ,  a~ = / + ( - i ) ~ ( l - a j ) r ,  bq = (-I)*(2aj - l ) l - ( l -21~i)r  

(4.7) 

In the limit as O9 --+ 1 (~tj --+ X) we obtain the crack opening in an isotropic poroelastic medium 
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w,,= , 

(4.8) 

If % < ~/1/2 the expression 8a~ - 8 ~  + 1 in (4.7) becomes negative, and in  this case, considering 
arcctg z and ~/z as functions of complex variables and changing from arcctg z to a logarithmic function, 
formula (4.7) can be transformed to a real expression. The range of variation of  aj q = 1, 2) that we 
are considering co~rresponds to roots of the characteristic equation which satisfy the inequality Ixj > X 
( j =  1,2). 

One can proceed similarly when aj > 1, i.e. l~ < X. Here it is also necessary to consider the function 
in formula (4.7) as a function of  complex variables, and after appropriate transformations it can also 
be reduced to a ft~nction of a real variable. 

5. C A L C U L A T I O N  OF T H E  F U N C T I O N  Ta 

In the general case when solving a non-stationary hydrofracture problem for a transversely-isotropic 
poroelastic medium it becomes necessary to construct the functions T a = Im (Q+a- Q~)/2 (a  = 1, 2) 
in terms of the pore pressurep(r,  z, t), which is a real function of the real variables r and z. To this end 
we change from the variables r and z to complex variables tj and t~ (3.7). Then 

! ta-'C ta+" ¢ I u( ta - '¢  
Qa = ~tQ _ P 2i ' 2IX a J --~t ~ ~ ' 

+ 2.a ~,' f f  ' 2.~ 

2~t~ ) 

(U=3pl~r,  V=Opl~z) 

(5.1) 

The boundary values of function (5.1) at z = 0 ~ 0, using the properties of Cauchy integrals, are 
taken along the inJ~ite line z = 0 [19], and also the condition U = V = 0 as r 2 + z 2 ---> **, can be  repre- 
sented in the form 

o - d i2 +(r-x)lt2bta -i(r+x)] (5.2) 

In obtaining formula (5.2) we used symmetry properties of the functions U and V, associated with 
the symmetry conditions of the problem: U(-~, ; )  = -U(~, ~), U(~, -~)  = U(~, ~), V(-~, ~) = V(~, ~), 

= O. 
From (5.2), the symmetry properties of U and V, and the fact that the roots of t he  characteristic 

equation are real or complex-conjugate, it follows that 

R e ~  ~a(Q~+Q~~)=O, T a = I m ( Q ~ - Q ~ ) = - ~ - i - 2  d~ d~V(~,~)La(r,~,~)} 
a l l  0 

L a(r,~,O= 16 i dx r - z  Im{ i~ta } 
0 (2~) 2 - ( r+ ' [ )  2 (2ga~) 2 + ( r  +'[) 2 

(5.3) 

Thus, by obtaining for a given time t the velocity field V = 3p/Oz in the domain r e [0, .o), z ~ [0, ~,) 
from the transfer equation for a permeating fluid (1.3) and then computing the functions Ta from 
formulae (5.3), one can construct the crack opening from (3.25). 
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